

Photometer

Einfach Messen!

Je nach Applikation bietet WTW die geeigneten Photometer mit den dazu passenden Tests. Photometer und Testsätze sind optimal aufeinander abgestimmt: alle Testsätze sind als Methoden auf den Photometern gespeichert.

Küvettentests ohne Barcode

Pulvertests

Klein aber fein, die Pulvertests für unterwegs

S. 92

... präzise und für jeden Einsatz

pHotoFlex S. 86

PHotoFlex

Koffer/Sets

Mit dem mobilen Labor für unterwegs

S. 88

photoLab[®]

Ein System aus Messgerät und Reagenzien:

Die photometrische Bestimmung

Mit einem Photometer wird die Konzentrationsbestimmung gelöster Stoffe in der Abwasser-, Trinkwasser- und Umweltanalytik vorgenommen. Dazu wird dieser Stoff von Reagenzien oder Testsätzen zu einem messbaren Farbstoff umgesetzt. Die Färbung ergibt sich aus der Absorption bestimmter Lichtanteile (Wellenlängen) des weißen Lichtes; gemessen wird bei der Wellenlänge mit der größten Absorption. Der jeweilige Grad der Absorption des Lichtes lässt sich – in einem linearen Bereich – umrechnen in Konzentration. Aus dem linearen Bereich ergibt sich der Messbereich für die verschiedenen Testsätze.

Photometer und Testsätze bilden somit ein System und sind bestmöglich aufeinander abgestimmt. Moderne Photometer verfügen über sogenannte Methodendaten für die einzelnen Tests. Alle notwendigen Grundeinstellungen wie Wellenlänge, Umrechnungsfaktoren, Blindwert (= Eigenfärbung einer Lösung), etc., werden automatisch vorgenommen. Beim Einmessen eigener Methoden oder neuer Reagenzien werden die Kenndaten für den Test gemessen, eingegeben und dann als Methode abgespeichert.

Die Kenndaten für Testsätze sind für jedes Gerätemodell unterschiedlich, da sich die Optik unterscheidet. Dies erklärt auch die unterschiedlichen Messbereiche desselben Testsatzes für verschiedene Gerätemodelle.

Mobil und präzise:

Photometer

Die Serien pHotoFlex und photoLab®

Für die richtige Gerätewahl sind folgende Fakten entscheidend:

Mobiles Messen

Mit pHotoFlex und pHotoFlex Turb

Das Messen an wechselnden Standorten steht im Vordergrund. Deshalb erfüllen die Geräte folgende Anforderungen:

- stromsparend
- robust
- mobil
- genau

Diese Ansprüche erfüllt eine spezielle Optik, die mit einer Kombination aus LED und Filtern arbeitet. Die Robustheit der tragbaren pHotoFlex-Geräte basiert auf der geringen Erwärmung und höheren Lebensdauer der eingesetzten LEDs. Mit zwei Küvettengrößen sind die Messbereiche größtmöglich gestaltet und erlauben die Verwendung der gängigen Testsätze mit diesen Taschenphotometern. Mit einer optionalen LabStation können die mobilen Daten im Labor bequem bearbeitet werden.

Messen in Laborumgebung

Mit photoLab® S6/S12 und photoLab® Spektral

Höchste Ansprüche gelten im Labor als Basis für Forschung, Routinemessungen und Abgabenberechnung: Die Geräte müssen also

- AQS / IQK
- präzise Messung
- große Messbereiche
- Komfort wie Test- und Küvettenerkennung

bieten. Eine aufwendige Optik und die kurzen Einschaltzeiten sorgen für konstante Messbedingungen. Die ständige Energieversorgung ermöglicht den Einsatz von Barcodes. Die Optik sowie Rechteck-Küvetten bis 50 mm erlauben große Messbereiche bis hin zur Spurenanalyse. Die weitgehend konstanten Temperaturen im Labor ermöglichen umfangreichere Voreinstellungen für die Methoden, was zu einem höheren Arbeitskomfort führt.

Was bieten beide Serien gemeinsam?

- Bewährte, auf den jeweiligen Einsatz abgestimmte Qualität
- Höchste Genauigkeit entsprechend der eingesetzten Optik
- Ein großes Küvettenangebot und hervorragende Geräteeigenschaften für ihren unkomplizierten Einsatz

Einsatzbereiche Photometer

	Mobile P	hotometer		Laborphotometer			
Einsatzbereiche	pHotoFlex	pHotoFlex Turb	photoLab® \$6	photoLab® \$12	photoLab® Spektral		
Einsatzgebiete	Umweltmonitoring, Wasse industrie, Weinindustrie, P Bereiche mit vielfältigen M (Photometrie, pH, Trübung	rozesskontrolle, 1essaufgaben	Routinemessungen in Ab- und Trinkwasser, Feldeinsatz optional	Routinemessungen in Ab- und Trinkwasser, Umfassende Labor- Testaufgaben, Feldeinsatz optional	Routinemessungen in Ab- und Trinkwasser, Profigerät im VIS-Bereich für umfassende Laboraufgaben		
Wellenlängen	6 Wellenlängen: 436, 517, 557, 594, 610, 690 nm	6 Wellenlängen: 436, 517, 557, 594, 610, 690, 860 nm	6 Wellenlängen: 340, 445, 525, 550, 605, 690 nm				
Optisches System	LED mit Filter		Filter/Referenzstrahl	Filter/Referenzstrahl	Zeiss-Spektrometermodul		
Besondere Funktionen	pH-Messung pH-Messung, Trübung (IR) optional: LabStation mit Ladefunktion, PC-Softwareunterstützung und BarCode-Support		AQS/IQK	Routinemessungen in Ab- und Trinkwasser, Umfassende Labor- Testaufgaben, Feldeinsatz optional gen: 12 Wellenlängen: 330 nm – 850 nm frei einstellbar 25, 550, 340, 410, 445, 500, 525, 690, 820 nm nzstrahl AQS/IQK, Kinetik AQS/IQK, Kinetik AQS/IQK, Kinetik AQS/IQK, Kinetik AD- und Trinkwasser, Profigerät im VIS-Bereich für umfassende Laboraufgaben 330 nm – 850 nm frei einstellbar Zeiss-Spektrometermodul AQS/IQK, Kinetik, Absorptionsspektren; inkl. PC-Software für vereinfachte Dateneinund -ausgabe 50 100			
Eigene Methoden	100		nein	50	100		
Küvetten	Rund: 16 mm (Höhe varia 28 mm	bel: 91 – 104 mm),	Rund 16 mm		Rund und Rechteck		

photoLab® Serie

Die photoLab® Serie:

Hochpräzise Laborphotometer für jeden Anspruch

- AQS/IQK mehrstufig
- Automatische
 Küvettenerkennung
- Integrierter
 Barcode-Leser

Alle 3 bewährten Modelle der photoLab® Serie bieten den größtmöglichen Komfort zusammen mit hoher Qualitätssicherung: Deckel aufklappen, Küvette stecken, messen!

- Automatische Erkennung von Tests durch Barcodes
- Automatische Küvettenerkennung
- Automatischer Selbstcheck
- Qualitätssicherungs-Funktionen für Test und Instrument
 Passwort, Intervalle für Gerätecheck und Parameter, Überprüfung mit Standards
- Verwendung von Schnelltests in Reaktionsküvetten

Photometer

photoLab® \$6

Routinegerät mit 6 Wellenlängen für alle gängigen Routinebestimmungen in Reaktionsküvetten (16 mm), vor allem Ab- und Trinkwasser

photoLab® \$12

Allround-Gerät mit 12 Wellenlängen für Testsätze in Rund- und Rechteckküvetten für große Messbereiche und niedrige Konzentrationen. Außerdem sind 50 eigene Methoden und Kinetikmessungen möglich.

photoLab® Spektral

Hochwertiges Gitterspektralphotometer mit Zeissoptik für alle Routine- und Spezialaufgaben im VIS-Bereich: Testsätze für Rund- und Rechteckküvetten, Kinetikmessungen, Aufnahme von Absorptions- und Transmissionsspektren sowie 100 eigene Methoden bei freier Wahl der Wellenlänge von 330 – 850 nm. Inklusive Software Multi/ACHAT II für eine komfortable Datenverwaltung und das bequeme Einmessen eigener Methoden.

Technische Daten

Modell	photoLab® S6 und S6-A	photoLab® S12 und S12-A	photoLab® Spektral
Тур	Filterphotometer	Filterphotometer	Spektralphotometer mit Photodioden- Array-Technik
Photodioden-Array für	6 Wellenlängen	12 Wellenlängen	-
Wellenlängen nm	340, 445, 525, 550, 605, 690	340, 410, 445, 500, 525, 550, 565, 605, 620, 665, 690, 820	Bereich 330 bis 850, frei einstellbar
Eigene Methoden	-	50	100
Auto-Nullabgleich	ja	ja	ja
AutoSelect-Funktion	ja	ja	ja
Küvettenerkennung	ja	ja	ja
Küvettenart	rund	rund, 10 mm, 20 mm und 50 mm	rund, 10 mm, 20 mm und 50 mm
Datenspeicher und Uhrzeit	500 Datensätze mit Datum und Uhrzeit	1000 Datensätze mit Datum und Uhrzeit	1000 Datensätze mit Datum und Uhrzeit
Wesentliche Funktionen	Konzentrations-, Absorptions- und Transmissionsmessung, AQS/IQK, RS 232 Schnittstelle	Konzentrations-, Absorptions- und Transmissionsmessung, AQS/IQK, Kinetik, RS 232 Schnittstelle	Konzentrations-, Absorptions- und Transmissionsmessung, AQS/IQK, Kinetik, Spektren (Abs. +%T), RS 232 Schnittstelle
Akkubetrieb (optional)	1 Arbeitstag, Tiefentladeschutz, Erhaltungsladung bei Netzbetrieb	1 Arbeitstag, Tiefentladeschutz, Erhaltungsladung bei Netzbetrieb	-
Prüfzeichen	CE, UL, CUL	CE, UL, CUL	CE, UL, CUL
Garantiezeit	2 Jahre	2 Jahre	2 Jahre

Bestell-Info

Modell		Bestell-Nr.
photoLab® S6	Netzversion, 230 V Eurostecker	250 013
photoLab® S6-A	Akkuversion, 230 V Eurostecker	250 022
photoLab® S12	Netzversion, 230 V Eurostecker	250 024
photoLab® S12-A	Akkuversion, 230 V Eurostecker	250 026
photoLab® Spektral	230 V/115 V Netzsteckertrafo mit 4 Netzsteckeradaptern	250 028
	Hinweis: andere Netzversorgungs-/Ländervarianten auf Anfrage	

pHotoFlex Serie

pHotoFlex:

Die mobilen Taschenphotometer

NEU

- Komplettset mit "Labortisch"
 - Photometrie
 - pH
 - Trübung
- Unverlierbarer Adapter
- Per Tastendruck:
 Einheit und Zitierform

Die neuen Taschenphotometer bieten alle Vorzüge für den Feldeinsatz: Sie sind handlich, stromsparend und bieten dabei viele Extras!

- Eine pfiffige Adapterlösung für den Einsatz unterschiedlicher Küvetten
- Ein Display mit Hintergrundbeleuchtung und automatischer Abschaltung
- Eine Benutzerführung am Display für die einfache Bedienung ohne Handbuch
- Eine große Auswahl an Testsätzen für alle Ansprüche
- Methoden- und Software-Updates via Internet
- Integrierte pH-Funktion mit automatischer Temperaturkompensation
- Trübungsmessung mit Infrarot-Lichtquelle gemäß DIN 27027 / ISO 7027
- 100 Programmplätze für eigene Routinemessungen
- Batteriebetrieb mit 4 Mignon Batterien (AA) für ca. 3000 Messungen
- LabStation für Laborbetrieb mit komfortabler Datenverwaltung optional
- Akkuset optional (alternativ zur LabStation)

Die pfiffige Adapterlösung

Durch einen ausgeklügelten Klappmechanismus ist der Adapter im Gerät integriert und kann damit nie verloren gehen. Einfach den magnetischen Deckel hochschieben und die 28 mm Rundküvette stecken. Oder – mit einer einfachen Handbewegung – den Adapter hochklappen und mit der 16 mm Rundküvette messen. Diese Küvette kann eine Höhe von 91 bis 104 mm aufweisen und erlaubt den Einsatz verschiedener Testsätze.

Photometer

pHotoFlex – Taschenphotometer mit pH

Das Taschenphotometer pHotoFlex zeigt seine Stärke bei komplexeren Aufgaben in der Umwelt- und Prozessüberwachung mit wechselnden Standorten.

pHotoFlex bietet eine äußerst unempfindliche, robuste Optik und ist damit bestens geeignet für den mobilen Einsatz unter wechselnden Bedingungen. Die eingesetzten LEDs + Filter für 6 Wellenlängen sind äußerst stromsparend und liefern genaue Messergebnisse. Die intuitive Menüführung ermöglicht das problemlose Messen ohne große Anleitung. Verdünnungsfunktion und Timer erleichtern die Arbeit in Sonderfällen.

- letzt über 100 Methoden
- Integrierte pH-Messung
- Färbungsmessung

mit pH-Messkette SenTix® 41

pH-Funktion

Die integrierte pH-Funktion erlaubt Messungen von pH 0-16 mit automatischer Puffererkennung (TEC/NIST). Die Temperaturkompensation erfolgt in dem zulässigen Messbereich von -5 ... 100 °C automatisch. Die WTW MultiCal®-Routine ermöglicht die automatische Kalibrierung mit bis zu 3 Kalibrierpunkten. WTW bietet eine große Auswahl an pH-Messketten als optionales Zubehör: Für Einsätze im Feld ist z.B. die wartungsfreie SenTix® 41 empfehlenswert, bei Präzisionsmessungen im Labor kommt die Glaselektrode SenTix® 81 zum Einsatz. Die genaue Beschreibung finden Sie im Kapitel über pH-Messung (ab S. 19).

pHotoFlex Turb – das Multitalent

Das pHotoFlex Turb entspricht dem pHotoFlex, verfügt aber zusätzlich über eine Infrarot-Lichtquelle (IR) zur nephelometrischen Trübungsmessung (90°) entsprechend den Forderungen der DIN 27027 / ISO 7027.

Die Kalibrierung mit den mitgelieferten AMCO-Standards kann dokumentiert und – wie auch Messwerte – über RS 232 ausgegeben werden. Mit der optionalen LabStation und LSdata können alle Daten GLP-konform und über eine komfortable Benutzeroberfläche am Bildschirm weiterbearbeitet werden (s.S. 88).

zusätzlich:

- Trübungsmessung gemäß
 DIN 27027 / ISO 7027
- 0-1100 NTU/FNU
 - (0.02-10-1000 NTU)

pHotoFlex Serie als SET im praktischen Tragekoffer!

Ein Tipp für unterwegs:

Um alle notwendigen Utensilien wie Testsätze und Spritzflasche mit destilliertem Wasser sowie einem Entsorgungsbehälter mitzunehmen – warum nicht einen praktischen Werkzeugkoffer aus dem Baumarkt nach Ihren eigenen Bedürfnissen gestalten?!

- Labor für unterwegs
- Integrierter "Labortisch"
- Handlich

Das kleine Labor für unterwegs: Besonders praktisch ist der integrierte "Labortisch" mit Vorrichtungen für das Messinstrument, Küvetten, Messbecher und ein Stativ für die pH-Elektrode. Komplette Sets mit:

- pH Elektrode SenTix® 41 für alle pHotoFlex Modelle
- 1 variabel einstellbare Pipette mit 5 ml Volumen für alle pHotoFlex Modelle
- Kalibrierstandards für pHotoFlex Turb und Turb 430 IR/T
- Viel nützliches Zubehör:
 Leerküvetten, Pufferlösungen mit pH 4.01 und 7.00, PC-Kabel AK Labor 540 B,
 Stativ für die pH-Elektrode, Reinigungstücher, Schraubendreher für den Batteriewechsel
- Stauraum für Utensilien

LabStation mit LSdata -

Die smarte Art, Messdaten zu verwalten!

Die LabStation macht aus den portablen pHotoFlex und Turb 430 Modellen eine kleine Laborlösung. Mit dem neuen Software-Paket LSdata können die erfassten Messdaten komfortabel und GLP-gerecht am PC weiterverarbeitet werden. Die Software ist im Lieferumfang der LabStation enthalten:

- GLP-gerechter Daten-Export vom Messinstrument zum PC mit Benutzerkennung
- Weiterverarbeitung im *.XLS-Format, z.B. zur übersichtlichen Dokumentation von jeweils einzelnen Probennahmeorten
- Eigene Methoden über ein benutzerfreundliches Dialogfenster erstellen, verwalten und zwischen PC und Messinstrument abgleichen
- Die Berechung der Kalibrierkurve für eigene Methoden

Die LabStation dient außerdem als Ladestation für den im Lieferumfang enthalten Akku. Alternativ steht für pHotoFlex und Turb 430 Modelle auch der Akku alleine zur Verfügung.

pHotoFlex Turb und Zubehör

Zubehör

Alles, was das Arbeiten leichter macht

Das Akkuset RB Flex/430

Rüstet pHotoFlex/Turb 430 zu einer Akkuversion auf: Das Set besteht aus einem aufladbaren Akkupack mit universellem Netzstecker. Für den Anschluss an den PC via RS 232 benötigt man das Kabel AK540/B (Bestell-Nr. 902 842).

LabStation LS Flex/430

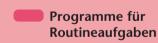
Die LabStation rüstet die Modelle pHotoFlex und pHotoFlex Turb sowie die Trübungsmessgeräte Turb 430 IR/T (*S. 108*) zu einem kleinen Laborgerät auf.

Durch die konstanten Umgebungsbedingungen sowie eine ständige Stromversorgung können die Testsätze auch via Barcode und ohne erneuten Nullabgleich bequemer durchgeführt werden. Barcodes sind in den Analysenvorschriften und auf der WTW Web-Seite (www.WTW.de) angeboten.

Mit LSdata lassen sich nicht nur gespeicherte Messungen sondern auch eigene Methoden hervorragend verwalten! Im Lieferumfang sind LSdata, das Akkuset RB Flex/430 sowie das Anschlusskabel AK Labor enthalten. Die LabStation ist Ladestation für das Akkuset.

Technische Daten

recinisene Baten		
Modell	pHotoFlex	pHotoFlex Turb
Lichtquelle	LED	LED
Wellenlänge nm	436, 517, 557, 594, 610, 690	436, 517, 557, 594, 610, 690 + 860
Eigene Methoden	100	100
Analysen-Timer	3	3
Datenspeicher	1000 Messungen	1000 Messungen
рН	0-16	0-16
Trübung	_	0-1100 NTU/FNU
Genauigkeit Photometrie pH Trübung (NTU/ FNU)	0,005 Abs Reproduzierbarkeit ±0,01 pH	< 2nm Wellenlängengenauigkeit, 0,005 Abs Reproduzierbarkeit ±0,01 pH 0,01 NTU/FNU oder ±2% vom Messwert
Nullabgleich Kalibrierung: Photometrie pH / Trübung	, , , , , , , , , , , , , , , , , , , ,	Vor Programm, mit LabStation 1x täglich 3-Punkt
Schnittstelle	RS 232, USB via Adapter (optional)	RS 232, USB via Adapter (optional)
Messart	Photometrie, pH	Photometrie, pH, Trübung
Batterie	4 Mignon (AA), über 3000 Messungen	4 Mignon (AA), über 3000 Messungen
Akku	Optional: Akku oder LabStation	Optional: Akku oder LabStation
Prüfzeichen	cETLus	cETLus
Garantie	2 Jahre	2 Jahre


Bestell-Info

	pHotoFlex und Zubehör	Bestell-Nr.
pHotoFlex	Taschenphotometer mit pH	251 100
pHotoFlex Turb	Taschenphotometer mit pH und Trübung	251 110
pHotoFlex/SET	Tragbares, universelles LED Filterphotometer im Feldkoffer mit Tischeinsatz sowie Zubehör	251 200
pHotoFlex Turb/SET	Tragbares, universelles LED Filterphotometer mit pH und Trübung im Feldkoffer mit Tischeinsatz, Kal.Kit und Zubehör	251 210
FC pHotoFlex/Turb 430	Feldkoffer + Tischeinsatz für alle pHotoFlex und Turb 430 Modelle	251 304
LS Flex/430	LabStation für alle pHotoFlex und Turb 430 Modelle mit Software LSdata, Akku und universellem Netzgerät	251 301
RB Flex/430	Akku für alle pHotoFlex Modelle und Turb 430 IR/T mit Universal-Netzstecker	251 300

NEU Schnellaufschluss für CSB

> Qualitätssicherung mit separatem Sensor

Thermoreaktoren

Thermoreaktoren für CSB und alle anderen thermische Aufschlüsse

Thermoreaktoren werden zur Bestimmung von CSB, Gesamtstickstoff oder Gesamtphosphor benötigt. Durch hohe Reaktionstemperatur über eine definierte Zeit wird ein vollständiger Aufschluss der Prode gewährleistet.

In jedem der WTW-Thermoreaktoren sind die wichtigsten Temperaturen und Aufschlusszeiten in Programmen hinterlegt: Es stehen 7, einfach zu wählende Programme zur Verfügung. Zusätzlich bieten die Thermoreaktoren CR 3200 und CR 4200 die Möglichkeit neben 7 festen auch 8 eigene Programme zu speichern. Die Bohrungen sind für Küvetten mit einem Außendurchmesser von 16 mm geeignet.

Neue Programme für CSB

Für den CSB-Aufschluss kann nun zwischen 3 Programmen gewählt werden: 148 °C oder 150 °C (gemäß US EPA) für 120 Minuten; auf vielfachen Anwenderwunsch ist nun ein **Schnellaufschluss** bei 148 °C für 20 Minuten möglich, da sich in der Praxis diese Zeitspanne als ausreichend erwiesen hat.

Sicherheitsvorkehrungen

Alle Thermoreaktoren bestechen durch optimale Wärmeübertragung zwischen Heizblock und Küvette sowie einem Höchstmaß an Sicherheit. Eine integrierte Sicherheitsabdeckung schützt gegen Spritzen von Chemikalien bei einem eventuellem Küvettenbruch. Auf der Heizblockoberfläche verhindert eine Abdeckung das Berühren der Heizblöcke. Alle Geräte verfügen über entsprechende Timer-Funktionen. Das Erreichen der Reaktionstemperatur wird auf allen Thermoreaktoren angezeigt.

Thermoreaktoren

Welches Gerät für welchen Einsatz?

CR 2200

Wer Routinearbeiten in der Wasseranalytik mit kleineren Probenmengen durchzuführen hat, ist mit dem CR 2200 genau richtig bedient: 12 Probenküvetten können hier mit 7 Programmen bei 100, 120, 148 und 150°C aufgeschlossen werden.

CR 3200

Der CR3200 erlaubt zusätzlich 8 eigene Programme mit freier Auswahl der Temperatur bis 170 °C für 2 x 12 Proben.

CR 4200

Wer multiple Arbeiten gleichzeitig lösen muß, für den ist der CR 4200 die richtige Wahl: Durch die beiden getrennt zu steuernden Thermoblöcke für je 12 Küvetten können hier z.B. CSB (148 °C) und Gesamt-N (120 °C) gleichzeitig durchgeführt werden. Es stehen auch hier 8 eigene Programme mit freier Temperaturwahl bis 170 °C zur Verfügung.

Qualitätssicherung:

Für die Modelle CR 3200 und CR 4200 steht der externe Temperatursensor TFK CR (Bestell-Nr. 250 100) als Prüfmittel zur Verfügung. Dieser Temperatursensor kann statt einer Probe in den Thermoreaktor gesteckt werden und gibt dann die ermittelten Soll- und Istwerte entweder über einen Drucker oder den PC aus. Die Funktionsfähigkeit läßt sich somit nicht nur überwachen, sondern auch dokumentieren.

Einsatzbereiche und technische Daten

	CR 2200	CR 3200	CR 4200
Einsatzgebiet	Routinemessungen, Abwasser	Routine- und Spezialaufgaben in Abwasser und Labor	Routine- und Spezialaufgaben in Abwasser und Labor
Anzahl Proben, max.:	1 x12	2 x 12 gleiches Programm	2 x 12, verschiedene Programme
7 Gespeicherte Programme:	100 °C 60 min, 120 °C mit 30 min, 60 min, 120 min, 148 °C 120 min, 20 min 150 °C 120 min	100 °C 60 min, 120 °C mit 30 min, 60 min, 120 min, 148 °C 120 min, 20 min 150 °C 120 min	100 °C 60 min, 120 °C mit 30 min, 60 min, 120 min, 148 °C 120 min, 20 min 150 °C 120 min
Eigene Programme	-	8 frei wählbar 25-170°C	8 frei wählbar 25-170°C
Regelgenauigkeit	±1 °C ±1 Digit		
Schutzklasse	I nach DIN VDE 0700 Teil 1/11.90	Routine- und Spezialaufgaben in Abwasser und Labor 2 x 12 gleiches Programm 2 x 12, verschiedene Programme 100 °C 60 min, 120 °C mit 30 min, 60 min, 120 min, 148 °C 120 min, 20 min 150 °C 120 min 8 frei wählbar 25-170°C Routine- und Spezialaufgaben in Abwasser und Labor 2 x 12, verschiedene Programme 100 °C 60 min, 120 °C mit 30 min, 60 min, 120 min, 148 °C 120 min, 20 min 150 °C 120 min 8 frei wählbar 25-170°C	
Gerätesicherheit	EN 61010, UL 3101, CAN/CSA C22.2-1010); EN 61010-2-010, IEC-CAN/CSA C22.2-101	0.2.010
Abmessungen	B: 256 mm H: 185 mm (geschlossen) 290	mm (geöffnet) T: 315 mm	

Bestell-Info

Modell		Bestell-Nr.
CR 2200	Reaktor (230 VAC mit Eurostecker) für CSB und andere thermische Aufschlüsse. Geeignet für die Aufnahme von 12 Reaktionsküvetten.	1P21-1
CR 3200	Universalreaktor (230 VAC mit Eurostecker) für CSB und andere thermische Aufschlüsse. Geeignet für die Aufnahme von 2x12 Reaktionsküvetten.	1P22-1
CR 4200	Universalreaktor (230 VAC mit Eurostecker) für CSB und andere thermische Aufschlüsse. Geeignet für die Aufnahme von 2x12 Reaktionsküvetten. Zwei separat steuerbare Heizzonen.	1P23-1

Reagenzien von A – Z

Reagenzien -

Für jeden Einsatz der richtige Test

Komfortabel

Präzise

Gesicherte Ergebnisse durch AQS/IQK

Für Routineuntersuchungen in den unterschiedlichsten Anwendungen steht eine Vielzahl von Testsätzen zur Verfügung. Photometer und Testsatz bilden zusammen ein System, welches in Abhängigkeit von Optik und eingesetzter Wellenlänge aufeinander abgestimmt sind und unterschiedliche Vorteile bieten:

Für den Einsatz mit mobilen Photometern sollen Testsätze vor allem unkompliziert sein: Die stromsparende LED-Optik erlaubt ohnehin den Einsatz einfacher und kostengünstiger Testsätze, z.B. einen Pulvertest. Im Labor hingegen spiegelt sich die aufwendige Gerätetechnik mit Barcode und höchster optischer Empfindlichkeit auch in den verfügbaren höchstpräzise Testsätzen wieder: durch Barcode, Chargenzertifikat und Unterstützung bei der Qualitätssicherung.

Die Reagenzienpalette wird laufend erweitert – nicht nur durch die Entwicklung neuer Tests, sondern auch durch eine Erweiterung für die Verwendbarkeit mit unterschiedlichen Gerätemodellen. Durch die unterschiedliche Optik von Gerätemodellen ist der Messbereich nicht für alle Gerätemodelle gleich: LED-Photometer haben meist einen kleineren Messbereich für dasselbe Testmodell.

Richtig Messen

Wer ein Chargenzertifikat genauer betrachtet, erkennt gleich, worauf es ankommt: Die Wahl des richtigen Messbereiches! Eine Konzentrationsbestimmung ist immer nur im linearen Bereich der Absorption (=Extinktion) präzise. An den Messbereichsgrenzen sind bereits Abweichungen innerhalb der angegebenen Toleranz zu erwarten. Deshalb lohnt es sich, eine Bestimmung gegebenenfalls noch einmal mit einem "passenderen" Testsatz durchzuführen!

Übersicht über Testtypen

Тур	Küvettentest	Reagenzientest	Pulvertest
Chargenzertifikat	Mit Zertifikat (●) für höchste Präzision Ohne Zertifikat (TC) für sehr gute Präzision	Mit Zertifikat (■) für höchste Präzision	Ohne Zertifikat (TP), präzise
Testerkennung	Barcode und/oder Methodenwahl	Barcode und/oder Methodenwahl	Methodenwahl, Barcode optional
Vorteile:	Reaktionsküvette mit Barcode oder Methodenwahl, 16 mm: Probenzugabe, Stecken, Messen und Ablesen bei minimalem Arbeitsaufwand QS-Unterstützung für gesicherte Ergebnisse	Großer Messbereich, Erfassung kleinster Konzentrationen in Rechteckküvetten bis 50 mm, QS-Unterstützung für gesicherte Ergebnisse	Geringstes Packmaß, einfacher Testablauf, wenig Utensilien
Anwendungsgebiet:	Labor, seltenes Arbeiten oder bei sehr großem Probendurchsatz,	Labor, geringste Konzentrationen, routiniertes, kostengünstiges Arbeiten bei großem Probendurchsatz	Mobile Messungen, Screening und Monitoring-Aufgaben

Reagenzien

		0.25 - 3.00 mg/l Ag (Gesamt-Ag: 100 °C oder 120 °C, 1 h) Aufschlussreagenzien im Testsatz enthalten * 0.02 - 0.50 mg/l Al		ph								
										7	Spektral	pHotoFlex
A C:11	Modell	Messbereich (Angabe max.)	Küvette (mm)	ml	Bestell-Nr.	Anz.	СС	MW	98	\$12	Spe	Hd
Ag Silber												
	14831	(Gesamt-Ag: 100 °C oder 120 °C, 1	h)	10	250 448	100	-	_	-	•	•	_
Al Aluminio	um											
	00594*	0.02 - 0.50 mg/l Al	rund	6.0 + 0.2	50	25	-	-	•	•	•	-
	14825	0.020 - 1.20 mg/l Al	10, 20, 50, 28	5	250 425	300	V	~	_	•	•	
	TP Al-1 TP	0.00 - 0.25 mg/l Al	28	20	251 400	100	_	_	_	_	_	
Ammoniun	n:											
	siehe NH₄											
Antimon:												
	Applikatio	nsschriften anfordern										
AOX												
	00675	0.05-2.50 mg/l AOX	rund	100	252 023	25	_	_	•	•	•	_
Arsen		<u> </u>										
	01747	0.001 - 0.100 mg/l As	10, 20,16 ,28	350	252 063	30	_	_	_	•	•	
zusätzlich erforderl			., ., .,		252 066	1						
Ascorbinsä												
		nsschriften anfordern										
Au Gold												
	14821	0 5 - 12 0 mg/l Au	10.16	2	250 436	80	~	/	_	•	•	
B Bor	11021	0.5 12.0 mg/1/10	10, 10		230 130	00	Ť					
20.	1 4839	0.050 - 0.800 mg/LB	10 20	5	250 427	60	_	_	_		•	
	00826							7				
Br ₂ Brom	00020	0.03 - 2.00 mg/r b	Tuliu	-T	232 041	23		Ť				
DIZ DIOIII	00605	0.020 - 10 mg/l Br-	10 20 50	10	252.014	200						
C ₂ H ₂ OH ΔI		* -	10, 20, 30	10	232 014	200	_	_	_			_
C2115O11 711	• 14965		rund	0.2	252 021	25						
C ₆ H ₅ OH Ph		0.40 - 3.00 g/1 Alkonol	Tuliu	0.2	232 031	23						
C6113O1111	00856	0.002 0.100 mg/LC.H-OH	20	200	252.058	50		,				
	00030				232 030							
	14551	0.10 - 2.50 mg/l C ₆ H ₅ OH	rund	10	250 412	25	-	~	-	•	•	-
Ca Calcium	1											
	14815	5 - 160 mg/l Ca	10, 20, 16, 28	0.1	250 428	100	-	~	-	•	•	
	00858	10 - 250 mg/l Ca	rund	1	252 047	25	-	-	•	•	•	-
Cd Cadmiu	ım											
	14834	0.025 - 1.000 mg/l Cd	rund	5	250 314	25	~	-	•	•	•	•
	01745	0.002- 0.500 mg/l Cd	10, 20, 50	10	252 051	55	-	-	-	•	•	-
Cl Chlorid												
	1 4730	5 - 125 mg/l Cl	rund	1	250 353	25	V	V	•	•	•	
	14897	2.5 - 250 mg/l Cl	10	1, 5	250 491	100	~	~	-	•	•	
= Reaktio	nsküvettentests	r; TC = Küvettentest; TP = Pulvertest;	CC = 0 MW = 1			r				en; /2006		

Reagenzien von A – Z

										ph	otoLa		>
	Mod	dell Messbereic	h (Angabe max.)	Küvette (mm)	ml	Bestell-Nr.	Anz.	сс	MW	98	\$12	Spektral	nHotoFlex
Cl ₂ Chlor													
	005	95 0.03 - 6.00	Cl ₂	rund	5	250 419	200	-	-	•	•	•	
	005	97 0.03 - 6.00	Cl ₂	rund	5	250 420	200	-	-	•	•	•	
	005	98/1 0.010 - 6.0	Cl ₂	10, 20, 50	10	252 010	1200	-	-	-	•	•	
	005	98/2 0.010 - 6.0	O Cl ₂	10, 20, 50	10	252 011	200	-	-	-	•	•	
	005	99 0.010 - 6.0	O Cl ₂	10, 20, 50	10	252 012	200	-	-	-	•	•	
	006	0.010 - 6.0	O Cl ₂	10, 20, 50	10	252 013	200	-	-	-	•	•	
	■ 006	0.010 - 6.0	O Cl ₂	10, 20, 50	10	252 055	1200	-	-	-	•	•	
	1 48	28 ersetzt durc	h 00598, 00599, 00602										
	1 47	32 ersetzt durc	h ClO ₂ 00608 und Ozon	00607									
	TP CI-1	TP 0 - 2.00 mg	J/I Cl ₂ , frei	rund, 28	10	251 401	100	-	-	-	-	-	
	TP CI-2	TP 0.00 - 5.00	mg/l Cl ₂ , frei	rund, 28	25	251 402	100	-	-	-	-	-	
	TP CI-3	TP 0.00 - 2.00	mg/I Cl ₂ , gesamt	28	25	251 414	100	-	-	-	-	-	
IO ₂ Chlore	dioxid	I											
	■ 006	0.020 - 10.	00 mg/l ClO ₂	10, 20, 50, 28	10	252 017	150	_	-	_	•	•	
	1 47	32 ersetzt durc	h ClO ₂ 00608 und Ozon	00607									
IO ₂ Chlore	dioxid	I/Chlor/Ozon											
_	1 47	32 ersetzt durc	h ClO ₂ 00608 und Ozon	00607									
N Cyanid	(freie	s und leicht fr	eisetzbares Cyani	id)									
	145		-	rund	5	250 344	25	_	_	•	•	•	
	■ 097	0.002 - 0.5	00 mg/l CN	10, 20, 50	5, 10	250 492	100	_	_	_	•	•	
r Chroma	t (Chi	om VI und Ge											
	145			rund	10	250 341	25	_	~	•	•	•	
	147		3	10, 20, 50	5	250 433	250	_	~	_	•	•	
rO ₃ Chror				, ,									
		e reagenzienfreie Test	ç										
u Kupfer	31011	e reagenzienneie resi	3										
a itapici	• 145	53 0.05 - 8.00	ma/I Cu	rund	5	250 408	25		./				
	■ 147			10, 20, 50, 16, 2		250 441	250		./				
	TP Cu-		3	28	10	251 403	100	_		_			
u Kupferb		1 17 0.00 - 3.00	mg/i Cu	20	10	231 403	100	_	_	_	_	_	
u Kupieib													
otorgonti		e reagenzienfreie Test	.5										
etergenti		-											
Fluorid	sieh	e renside: anionisch,	kationisch, nichtionisch										
Fluorid													
	• 145			rund	5	250 365	25	-	~	-	•	•	
	145			10	5 bzw. 0.5	252 048	100	-	-	-	•	•	
= Reaktior = Reagenz			C = Küvettentest; P = Pulvertest;		CombiCheck; Meerwasser;				obenv rfüaba		en; /2006		

Reagenzien

			00 mg/l Fe rund 5 250 349 25		ph	otoLa		×				
											Spektral	pHotoFlex
14549 0.05 - 4.00 mg/l Fe	Küvette (mm)	ml	Bestell-Nr.	Anz.	сс	MW	98	S12	Spel	PH ₀		
Fe Eisen			Ì									
	14549	0.05 - 4.00 mg/l Fe	rund	5	250 349	25	V	~	•	•	•	•
	14896	1.0 - 50.0 mg/l Fe	rund	1	250 361	25	-	-	•	•	•	-
	14761/1	0.005 - 5.00 mg/l Fe	10, 20, 50, 16, 2	28 5	250 435	1000	~	~	-	•	•	•
	14761/2	0.005 - 5.00 mg/l Fe	10, 20, 50, 16, 2	28 5	250 439	250	V	~	_	•	•	•
	00796	0.010 - 5.00 mg/l Fe	10, 20, 50	8	252 042	150	~	V	_	•	•	_
Т	P Fe-1 TP	0.00 - 1.80 mg/l Fe	28	10	251 404	100	_	_	_	_	_	•
Т	P Fe-2 TP	0.00 - 3.00 mg/l Fe	28	10	251 405	100	_	_	_	_	_	•
Formaldehy	d:											
,)										
Gesamtstick												
Gesameseich												
Cosamtoho												
Gesamilphos	•	L L										
Halamana (a		nospnat										
Halogene (g												
	siehe Cl ₂ , Bi	r ₂ , J ₂ , ClO ₂ , O ₃										
Hazen:												
H ₂ O ₂ Wasse	rstoffpero	oxid										
	14731	2.0 - 20.0 mg/l H ₂ O ₂	rund	10	250 402	25	-	~	-	•	•	-
	18789*	0.10 - 6.00 mg/l H ₂ O ₂	10, 20	8.0		ca. 100	-	~	-	•	•	_
HCHO Form	aldehyd											
	14500	0.10 - 8.00 mg/l HCHO	rund	2	250 406	25	-	-	•	•	•	_
	14678	0.02 - 8.00 mg/l HCHO	10, 20, 50	3	250 331	100	_	_	_	•	•	-
l ₂ lod												
_	00606	0.050 - 10.00 mg/l l ₂	10, 20, 50	10	252 015	200	_	_	_	•	•	_
Iod-Farbzah	l:	3 2										
,		nzienfreie Tests: Färhung										
K Kalium	sierie reage.	.z.e.mere reser ransumg										
	14562	5.0. 50.0 mg/LK	rund	2	250 407	25		./				
		3					_	.,				
Kieselsäure:	00013	30 - 300 mg/l K	runa	0.5	232 020	23	_	•				_
Rieseisaure.												
Kunfor Bod.	siehe Siliciu	m										
Kupfer-Bad:												
		nzienfreie Tests										
Mg Magnes												
	00815	5.0 - 75.0 mg/l Mg	rund	1	252 043	25	-	~	•	•	•	•
Mn Mangan	1											
	01739	0.005 – 2.000 mg/l Mn	10, 20, 50	8	252 056	250	-	-	-	•	•	-
1	14770	0.01 - 10.0 mg/l Mn	10, 20, 50	5	250 442	500	~	V	-	•	•	•
	00816	0.10 - 5.00 mg/l Mn	rund	7	252 035	25	~	-	•	•	•	•
Т	P Mn-1 TP	0.0 - 20.0 mg/l Mn	rund, 28	10	251 406	100	_	-	_	_	_	•
	sküvettentests;	TC = Küvettentest;		CombiChecl				obenv				
= Reagenzi	entests;	TP = Pulvertest;	MW = N	Meerwasser;		,	* = ve	rfügb	ar Q3	/2006)	

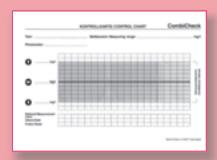
Reagenzien von A – Z

										ph	otoLa		
	Modell	Messbereich (Ang	ıabe max.)	Küvette (mm)	ml	Bestell-Nr.	Anz.	СС	MW	98	S12	Spektral	
Mo Molybdär			,,	,									
•	00860	0.02 - 1.00 mg/l N	Ло	rund	10	252 040	25	-	-	-	•	•	
	Mo-1 TP	0.0 - 35.0 mg/l M	0	rund, 28	10	251 407	100	-	-	-	-	-	
Monochloran	nin												
	01632	0.05 – 10.0 mg/l (CI ₂	10, 20, 50		252 057	150	-	-	-	•	•	
N ₂ H ₄ Hydrazi	n												
	09711	0.005 - 2.00 mg/l	N ₂ H ₄	10, 20, 50	5	250 493	100	-	-	-	•	•	
l _{ges} Gesamts	tickstoff												
•	14537	0.5 - 15.0 mg/l N _c (120 °C, 1 h)	ges	rund	10	250 358	25	~	-	•	•	•	
•	14763	10 - 150 mg/l N _{ge} (120 °C, 1 h)	rs	rund	1	250 494	25	~	-	•	•	•	
•	00613	0.5 - 15.0 mg/l N _c (120 °C, 1 h)	ges	rund	10	252 018	25	~	-	•	•	•	
TC	N _{tot} 1 TC (LR)	0 - 25.0 mg/l N _{ges} (120°C, 30 min.)	;	16	2; 2	251 995	50	-	-	-	-	-	
	N _{tot} 2 TC (HR)	5 - 150 mg/l N _{ges} (120°C, 30 min.)		16	0.5; 2	251 996	50	-	-	-	-	-	
la Natrium													
	00885	10 - 300 mg/l Na		rund	0.5	252 044	25	_	-	•	•	•	
H ₄ Ammoni	um												
•	14739	0.010 - 2.000 mg/ 0.01 - 2.60 mg/l N		rund	5	250 495	25	~	-	•	•	•	
•	A5/25	0.20 - 8.00 mg/l N 0.26 - 10.3 mg/l N		rund	1	250 323	25	~	~	•	•	•	
•	14544	0.5 - 16.0 mg/l NI 0.6 - 20.6 mg/l NI		rund	0.5	250 329	25	~	~	•	•	•	
•	14559	4.0 - 80.0 mg/l NI 5.2 - 103.0 mg/l N		rund	0.1	250 424	25	~	~	•	•	•	
	14752	0.010 - 3.00 mg/l 0.013 - 3.86 mg/l		10, 20, 50, 16,		250 426	500	~	~	-	•	•	
	00683	2.0 - 150 mg/l NH 2.6 - 193 mg/l NH	I ₄	10	0.1, 0.2	252 027	100	~	~	-	•	•	
TP	NH ₄ -1 TP	0.00 - 0.50 mg/l N 0.00 - 0.64 mg/l N		28	10	251 408	100	-	-	-	-	-	
		0.00 - 2.50 mg/l N 0.00 - 3.20 mg/l N	NH ₄	rund	2	251 997	50	-	-	-	-	-	
	NH ₄ -3 TC (HR)	0 - 50 mg/l NH ₄ -N 0 - 64 mg/l NH ₄	N	rund	0.1	251 998	50	-	_	-	_	-	
li Nickel													
•	14554	0.10 - 6.00 mg/l N	Ni	rund	5	250 409	25	V	-	•	•	•	
	14785	0.02 - 5.00 mg/l N	Ni	10, 20, 50	5	250 443	250	~	-	-	•	•	
ickel-Bad:													
	siehe reagen.	zienfreie Tests											
IO ₂ Nitrit													
•	N4/25	0.020 - 0.600 mg/ 0.05 - 2.00 mg/l N		rund	4	250 343	25	-	~	•	•	•	
•	00609*	1.0 - 90.0 mg/l No 3.28 - 295.2 mg/l		16	8.0		25	-	~	•	•	•	
= Reaktionskü= Reagenzien		TC = Küv TP = Pul	vettentest; vertest;		CombiCheck Meerwasser;		n	nl = Pro * = ve					

Reagenzien

									ph	otoLa		>
									,_	S12	Spektral	nHotoElev
	Modell	Messbereich (Angabe max.)	Küvette (mm)	ml	Bestell-Nr.	Anz.	CC	MW	98	S1	Sp	2
	14776/1	0.005 - 1.000 mg/l NO ₂ -N 0.016 - 3.29 mg/l NO ₂	10, 20, 50	5	250 445	1000	-		-	•	•	
	14776/2	0.005 - 1.000 mg/l NO ₂ -N 0.016 - 3.29 mg/l NO ₂	10, 20, 50	5	250 440	335	-	~	-	•	•	
TP	NO ₂ -1 TP	0.00 - 0.33 mg/l NO ₂ -N 0.00 - 1.08 mg/l NO ₂	rund, 28	10	251 409	100	-	-	-	-	-	
TC	NO ₂ -2 TC	0.03 - 0.60 mg/l NO ₂ -N (LR) 0.10 - 1.97 mg/l NO ₂ (LR)	rund, 16	2	251 994	24	-	-	-	-	-	
		0.30 - 3.00 mg/l NO ₂ -N (HR) 0.99 - 9.85 mg/l NO ₂	rund, 16	0.5								
O ₃ Nitrat												
	14556	0.10 - 3.00 mg/l NO ₃ -N 0.4 - 13.3 mg/l NO ₃	rund	2	250 411	25	~	~	-	•	•	
•	N1/25	0.5 - 23.0 mg/l NO ₃ -N 2 - 100 mg/l NO ₃	rund	0.5	250 342	25	~	-	•	•	•	
•	14542	0.5 - 18.0 mg/l NO ₃ -N 2.2 - 79.7 mg/l NO ₃	rund	1.5	250 410	25	~	-	•	•	•	
•	14764	1.0 - 50.0 mg/l NO ₃ -N 4 - 221 mg/l NO ₃	rund	0.5	250 347	25	~	-	•	•	•	
•	00614	23 - 225 mg/l NO ₃ -N 102 - 996 mg/l NO ₃	rund	0.1	252 019	25	-	-	•	•	•	
	14942	0.2 - 17.0 mg/l NO ₃ -N 0.9 - 75.3 mg/l NO ₃	10, 20, 50	1	250 422	50	~	~	-	•	•	
	14773	0.2 - 20.0 mg/l NO ₃ -N 0.9 - 88.5 mg/l NO ₃	10, 20	1.5, 3	250 444	100	~	-	-	•	•	
	09713	0.1 - 25.0 mg/l NO ₃ -N 0.45 - 110.7 mg/l NO ₃	10, 20, 50	0.5	250 421	90	~	-	-	•	•	
TC	NO ₃ -1 TC	0 - 30.0 mg/l NO ₃ -N 0-133 mg/l NO ₃	rund, 16	2	251 993	50	-	-	-	-	-	
₂ BSB Bioch	emischei	Sauerstoffbedarf										
•	00687	0.5 - 3000 mg/l BSB	rund	_	252 028	50	-	~	•	•	•	
		z 00688 (252 029) erstoffreaktionsflaschen 14663 (252 032 d (252 030)	2)									
2 CSB Chem	ischer Sa	auerstoffbedarf										
_	14560	4.0 - 40.0 mg/l CSB (148 °C, 2 h)	rund	3	250 303	25	V	_	•	•	•	
	C1/25	15 - 160 mg/l CSB (148 °C, 2 h)	rund	2	250 302	25	· ·					
							.,					
•	14895	15 - 300 mg/l CSB (148 °C, 2 h)	rund	2	250 359	25		_	•	•	•	
•	14690	50 - 500 mg/l CSB (148 °C, 2 h)	rund	2	250 304	25	~	_	•		•	
•	C2/25	25 - 1500 mg/l CSB (148 °C, 2 h)	rund	2	250 308	25	~	-	•	•	•	
•	14691	300 - 3500 mg/l CSB (148 °C, 2 h)	rund	2	250 351	25	~	-	•	•	•	
•	14555	500 -10000 mg/l CSB (148 °C, 2 h)	rund	1	250 309	25	~	-	•	•	•	
TC	COD1 TC (LR) 0 - 150 mg/l CSB (148 °C, 2 h)	rund	2	251 990	25	-	-	-	-	-	
TC	COD2 TC (MF	R) 0 - 1500 mg/l CSB (148 °C, 2 h)	rund	2	251 991	25	-	-	-	-	-	
TC	COD3 TC (HR) 0 - 15000 mg/l CSB (148 °C, 2 h)	rund	0.2	251 992	25	_	_	-	-	_	
		auerstoffbedarf (quecksilbe										
_	09772	10 - 150 mg/l CSB (148 °C, 2h)	rund	2	250 301	25	.,					
	09772	10 - 150 mg/l CSB (148 °C, 2h)	rund	2	250 301	25	V	_	•	•	•	
= Reaktionski		TC = Küvettentest; TP = Pulvertest;		CombiCheck;		m		obenv		en; /2006		

Reagenzien von A – Z


								ph	otoLa			
O Saugest	Modell	Messbereich (Angabe max.)	Küvette (mm)	ml	Bestell-Nr.	Anz.	сс	MW	98	\$12	Spektral	
2 Sauerst		0.5 12.0 mg/l O	rund		250 403	25						
O ₃ Ozon	• 14694	0.5 - 12.0 mg/l O ₂	rund		230 403	25	-	_				
3 02011	00607/1	0.010 - 4.00 mg/l O ₃	10, 20, 50, 28	10	252 016	200						
	00607/1			10	252 010	1200	_	_	_			
		ersetzt durch ClO_2 00608 und Ozor	10, 20, 50, 28	10	232 034	1200	_	_	_			
raanisch	14732	(flüchtig)	1 00607									
rgamsem	• 01763	50-3000 mg/l	rund		252 060	100						
b Blei	01703	30-3000 Hig/I	Tuliu		232 000	100	_	_				
D DICI	• 14833	0.10 5.00 mg/l Ph	rund	5	250 313	25	.,					
		0.10 - 5.00 mg/l Pb			252 034			_				
Н	09717	0.010 - 5.00 mg/l Pb	10, 50, 16, 28	8	232 034	50		_	_			
	01744	pH 6.4 – 8.6	rund	10	252 050	280		.,				
henol:	01/44	ρπ 6.4 – 6.6	runa	10	232 030	280	-	•				
Herioi.	-:-b C	II OII Bharad										
O ₄ Phosp		H ₅ OH Phenol										
O ₄ Pilosp		0.05 4.50 // 0.00			252.244	0.5			_	_	_	
	• P4/25	0.05 - 1.50 mg/l PO ₄ -P 0.05 - 1.50 mg/l P _{ges} 0.20 - 4.50 mg/l PO ₄	rund	4	250 366	25		•	•	•	•	
	• 14543	0.05 - 5.00 mg/l PO ₄ -P 0.05 - 5.00 mg/l P _{ges} 0.2 - 15.3 mg/l PO ₄	rund	5	250 324	25	V	~	•	•	•	
	• P5/25	0.3 - 15.0 mg/l PO ₄ -P 0.3 - 15.0 mg/l P _{ges} 1.0 - 45.0 mg/l PO ₄	rund	0.5	250 368	25	V	V	•	•	•	
	• 14546	0.5 - 25.0 mg/l PO ₄ -P 1.5 - 76.7 mg/l PO ₄	rund	5	250 413	25	~	~	•	•	•	
	• 14729	0.5 - 25.0 mg/l PO ₄ -P 0.5 - 25.0 mg/l P _{ges} 1.5 - 76.7 mg/l PO ₄	rund	1	250 334	25	V	~	•	•	•	
	• 00616	3.0 - 100.0 mg/l PO ₄ -P 10 - 307 mg/l PO ₄	rund	0.2	252 021	25	-	~	•	•	•	
	14848	0.01 - 5.00 mg/l PO ₄ -P 0.03 - 15.3 mg/l PO ₄	10, 20, 50, 16,	28 5	250 446	420	~	~	-	•	•	
	1 4842	0.5 - 30.0 mg/l PO ₄ -P 1.5 - 92.0 mg/l PO ₄	10, 20	5	250 447	400	-	~	-	•	•	
	00798	1.0 - 100 mg/l PO ₄ -P 3 - 307 mg/l PO ₄	10	8	252 045	100	-	~	-	•	•	
	TP PO4-1 T	0.00 - 2.45 mg/l PO ₄	rund, 28	10	251 410	100	-	-	-	-	-	
	TC PO4-2 T	0.00 - 4.91 mg/l PO ₄	rund, 16	5	251 989	50	_	-	-	-	-	
	TC PO4-3 T	C 0.00 - 1.10 mg/l PO ₄ -P 0.00 - 1.10 mg/l P _{ges} (Aufschluss) 0.00 - 3.37 mg/l PO ₄	rund, 16	5	251 988	50	_	-	_	-	_	
äurekapa	zität bis _l	pH 4.3										
	• 01762/1	0.20-8.00 mmol/l 10 - 400 CaCO ₃	rund 0.2, 1.0, 5.0	5	252 059	90	-	-	•	•	•	
	• 01762/2	2* 0.20-8.00 mmol/l 10 - 400 CaCO ₃	rund 0.2, 1.0, 5.0	16		450	-	-	•	•	•	
= Reaktion= Reager	onsküvettente:	sts; TC = Küvettentest; TP = Pulvertest;		CombiChe Meerwasse		n	nl = Pr			en; /2006		

Photometer

									ph	otoLa		X-I
									10	S12	Spektral	nHotoFlex
Schwermetall	Modell e:	Messbereich (Angabe max.)	Küvette (mm)	ml	Bestell-Nr.	Anz.	cc	MW	86	S	Ş	-
, c. i i i c. i i c. i i c. i i i c. i c. i i c.		admium, Chrom										
Si Silicium/Ki	•	<u> </u>										
	14794	0.005- 5.00 mg/l Si	10, 20, 50	5	250 438	300	_	~	_	•	•	
	00857	0.5 - 500 mg/l Si	10	4/0.5	252 046	100	_	_	_	•	•	
TP	Si-1 TP (LR)	0.00 - 1.60 mg/l SiO ₂ 0.00 - 0.75 mg/l SI	rund, 28	10	251 411	100	-	-	-	-	-	
ТР	Si-2 TP (HR)	0.0 - 100.0 mg/l SiO ₂ 0.0 - 46.7 mg/l SI	rund, 28	10	251 412	100	_	-	-	-	-	,
Stickstoff (ge	samt):	J,										
	siehe N _{ges}											
Sn Zinn	ges											
•	14622	0.10 - 2.50 mg/l Sn	rund	5	250 401	25	_	~	_	•	•	
SO ₃ Sulfit		<u> </u>										
	14394	1.0 - 20.0 mg/l SO ₃	rund	3	250 416	25	-	_	_	•	•	
	01746	1.0-60.0 mg/l SO ₃	10	2	252 053	150	-	_	_	•	•	
SO ₄ Sulfat												
•	14548	5 - 250 mg/l SO ₄	rund	5	250 414	25	V	V	•	•	•	
•	00617	50 - 500 mg/l SO ₄	rund	2	252 022	25	V	~	•	•	•	
•	14564	100 - 1000 mg/l SO ₄	rund	1	250 415	25	V	~	•	•	•	
	14791	25 - 300 mg/l SO ₄	10, 20	2.5	250 449	200	V	_	_	•	•	
TP	SO4-1 TP	0 - 70 mg/l SO ₄	rund, 28	10	251 413	100	_	_	_	_	_	
S Sulfid/Hydr	ogensulfi	id										
•	14779	0.02 - 1.50 mg/l S	10, 20, 50	5	250 450	220	_	_	_	•	•	
Tenside												
a-Ten (anionisch)	14697	0.05 - 2.00 mg/l a-Ten	rund	5	250 333	25	-	_	_	•	•	
c-Ten (kationische)	01764	0.05 - 1.50 mg/l CTAB	rund	5	252 062	25	-	_	_	•	•	
n-Ten (nichtionische)	01787	0.10 - 7.50 mg/l Triton X-100	rund	4	252 061	25	-	_	_	•	•	
ΓOC gesamte	r organis	sch gebundener Kohlenst	off									
•	14878	5.0 - 80.0 mg/l TOC	rund	3	252 036	25	-	_	•	•	•	
•	14879	50 - 800 mg/l TOC	rund	3	252 037	25	-	_	•	•	•	
zusätzlich erforderlich: verfügbar:		bkappen (252 038) rd 1000 mg/l (250 499)										
Nasserhärte,	GH Gesa	mthärte										
•	00961	0.7 - 30.1 °d 5 - 215 mg/l Ca	rund	1	252 039	25	_	-	•	•	•	,
Wasserhärte,	RH Resth	närte										
•	14683	0.075 - 0.750 °d 0.50 - 5.00 mg/l Ca	rund	4	250 404	25	_	_	•	•	•	
Zn Zink												
•	00861	0.025 - 1.000 mg/l Zn	rund	2	252 049	25	-	-	•	•	•	
•	14566	0.20 - 5.00 mg/l Zn	rund	0.5	250 417	25	V	-	•	•	•	
	14832	0.05 - 2.50 mg/l Zn	10	5	250 451	90	-	-	-	•	•	
Reagenz erforderlich:	06146	Zink Reagenz 6			250 452	180						
= Reaktionskü= Reagenzien		TC = Küvettentest; TP = Pulvertest;		CombiCheck Meerwasser;	;			obenv erfügba			j	

Lagerung: +2 °C bis +8 °C

CombiCheck

CombiCheck-Lösungen sind gebrauchsfertige Mehrparameter-Standards. Jede Packung enthält eine Standardlösung und eine Additionslösung. Beide Lösungen können direkt **ohne Verdünnen** zur Qualitätssicherung eingesetzt werden.

- Mit der Standardlösung belegt man die Ergebnisrichtigkeit des kompletten Systems: Arbeitsweise Analysenverfahren Reagenzien Photometer.
- Mit der Additionslösung prüft man probenabhängige Einflüsse durch Messung der Wiederfindungsrate und legt die geeignete Probenvorbereitung fest.

Die maximale Anzahl der Bestimmungen mit einer Standardlösung **CombiCheck** hängt vom verwendeten Testsatz ab. Bei der Additionslösung sind immer 280 Bestimmungen möglich.

Bitte beachten Sie auch die Hinweise in den Beschreibungen der Testsätze!

Modell				Bestell-Nr.
14676	CombiCheck	10		250 482
	Parameter	Konzentration	geeignet für Testsatz Modell	maximale Anzahl der Bestimmungen
	Ammonium	4.00 mg/l NH ₄ -N	A5/25 14558	90 90
	Chlorid	25.0 mg/l Cl	14730	90
	CSB	80 mg/l CSB	C1/25 14540	45 30
	Nitrat	2.5 mg/l NO ₃ -N	14556 14773	45 60
	Phosphat	0.80 mg/l PO ₄ -P	P4/25 14543 14848	22 18 9
	Sulfat	100 mg/l SO ₄	14548 14791 00617	18 40 48
Modell				Bestell-Nr.
14675	CombiCheck	20		250 483
	Parameter	Konzentration	geeignet für Testsatz Modell	maximale Anzahl der Bestimmungen
	Ammonium	12.0 mg/l NH ₄ -N	14544	180
	Chlorid	60 mg/l Cl	14730	90
	CSB	750 mg/l CSB	C2/25 14541	45 30
	Nitrat	9.0 mg/l NO ₃ -N	N1/25 14542 14563 14773 14942 09713	180 60 90 60 60 180
	Phosphat	8.0 mg/l PO ₄ -P	P5/25 14729	180 90
	Sulfat	500 mg/l SO ₄	14564	90
Modell				Bestell-Nr.
14677	CombiCheck			250 484
	Parameter	Konzentration	geeignet für Testsatz Modell	maximale Anzahl der Bestimmungen
	Cadmium	0.500 mg/l Cd	14834	19
	Kupfer	2.00 mg/l Cu	14553 14767	19 19
	Eisen	1,00 mg/l Fe	14549 14761 00796	19 9 12
	Mangan	1.00 mg/l Mn	14770 00816	9 13

Modell				Bestell-Nr
14692	CombiCheck	40		250 485
	Parameter	Konzentration	geeignet für Testsatz Modell	maximale Anzahl der Bestimmungen
	Aluminium	0.75 mg/l Al	14825	19
	Nickel	2.00 mg/l Ni	14554 14785	19 19
	Blei	2.00 mg/l Pb	14833 09717	19 11
	Zink	2.00 mg/l Zn	14566	190
Modell				Bestell-Nr.
14695	CombiCheck	50		250 486
	Parameter	Konzentration	geeignet für Testsatz Modell	maximale Anzahl der Bestimmungen
	Ammonium	1.00 mg/l NH ₄ -N	14739 14752	19 19
	Stickstoff	5.0 mg/l N _{ges}	14537 00613	9 9
	CSB	20.0 mg/I CSB	14560	32
Modell				Bestell-Nr.
14696	CombiCheck	60		250 487
	Parameter	Konzentration	geeignet für Testsatz Modell	maximale Anzahl der Bestimmungen
	CSB	250 mg/l CSB	14690 14895	48 48
	Chlorid	125 mg/l Cl	14897	96
Modell				Bestell-Nr.
14689	CombiCheck	70		250 488
	Parameter	Konzentration	geeignet für Testsatz Modell	maximale Anzahl der Bestimmungen
	Ammonium	50.0 mg/l NH ₄ -N	14559 00683	950 480
	CSB	5000 mg/l CSB	14555	95
	Stickstoff	50.0 mg/l N _{ges}	14763	95
Modell				Bestell-Nr.
14738	CombiCheck	80		250 489
	Parameter	Konzentration	geeignet für Testsatz Modell	maximale Anzahl der Bestimmungen
	CSB	1.500 mg/l CSB	14691	48
	Nitrat	25.0 mg/l NO ₃ -N		190
	Phosphat	15.0 mg/l PO ₄ -P	1/1720	95

Zubehör Metrie Zubehör Photometer

Standard-Lösungen

Parameter	Konz. in mg/l	Menge in ml	Modell	Bestell-Nr.
Aluminium	1000	500	19770	250 460
Ammonium	1000	500	19812	250 461
AOX	20	85 (8-16 Prüfungen)	00680	252 026
Blei	1000	500	19776	250 462
Bor	1000	500	19500	250 463
BSB	210	10 Fl. für 10 x 1l	00718	252 030
Cadmium	1000	500	19777	250 464
Calcium	1000	500	19778	250 465
Chlorid	1000	500	19897	250 466
Chrom	1000	500	19779	250 467
Chromat	1000	500	19780	250 468
CSB 160	100	30	KCSB 100	250 356
CSB 1500	400	30	KCSB 400	250 357
Eisen	1000	500	19781	250 469
Fluorid	1000	500	19814	250 470
Kalium	1000	500	70230	252 471
Kieselsäure (Silicium)	1000	500	70236	252 472
Kupfer	1000	500	19786	250 473
Mangan	1000	500	19789	250 474
Nickel	1000	500	19792	250 475
Nitrat	1000	500	19811	250 476
Nitrit	1000	500	19899	250 477
Phosphat	1000	500	19898	250 478
Silber	1000	500	19797	250 479
Sulfat	1000	500	19813	250 480
тос	1000	100	09017	250 499
Zink	1000	500	19806	250 481

Liste der Standardlösungen, die aufgrund der begrenzten Stabilität regelmäßig frisch angesetzt werden müssen:

- freies Chlor
- gebundenes Chlor
- Formaldehyd
- Hydrazin
- Hydrogensulfid
- Phenol
- Silicium
- Sulfid
- Sulfit
- anionische Tenside
- Wasserstoffperoxid

PhotoCheck

AQS/IQK: Ein umfassendes Prüfmittel für die Optik und die Linearität der Messung!

Die stabilen Farblösungen dienen zur Überprüfung der Filter bzw. der Wellenlängeneinstellung 445 nm/446 nm, 520 nm/525 nm sowie 690 nm. Mit jeweils vier Lösungen je Wellenlänge werden die Richtigkeit der Wellenlängeneinstellung und die Linearität der Extinktionsmessung überprüft. Die Überprüfung erfolgt schnell und bequem über eine einfache menügeführte Funktion. Die Rückverfolgbarkeit dieses Prüfmittels auf internationale Standards wird garantiert durch das Überprüfen der Lösungen in einem Referenz-Photometer, das mit Primärstandards (NIST-Standards) überwacht wird. Diese Werte werden entsprechend dokumentiert.

PipeCheck

Ein Prüfmittel für das richtige Pipettiervolumen!

Mit der zu prüfenden Pipette verdünnt man die entsprechende Prüflösung mit dest. Wasser und vergleicht die Extinktion der verdünnten Lösung mit der Extinktion einer Referenzlösung. Pipetten mit Volumenabweichungen von mehr als 2,5 % werden als fehlerhaft ausgewiesen.

Allgemeine Hinweise

Chargement fills at COS 1000 Montes Cook Season Sea

Wir nehmen alle gebrauchten Reaktionsküvettentestsätze kostenlos zur Entsorgung zurück.
Bitte fordern Sie Rücknahmekartons bei WTW an.

- Die aktuellen **Analysenvorschriften** liegen jeweils den Packungen bei.
- Zertifikate für Testsätze und finden Sie auf der WTW-Homepage unter www.WTW.com.
- Lagerung: Wenn nichts anderes angegeben ist, kann der Testsatz bei +15 °C bis +25 °C gelagert werden
- WTW empfiehlt, Reagenzien und Photometer regelmäßig zu überprüfen, z.B. mit PhotoCheck und CombiCheck.
- Reaktionsküvettentests sind mit gekennzeichnet. Die Küvettenangabe ist "rund", d.h. der Außendurchmesser der Küvette beträgt 16 mm. Die Reaktionsküvettentests sind vorkonfektionierte Schnelltests mit nur einem Messbereich.
- Reagenzientests sind mit gekennzeichnet. Die Messbereichsangabe bezieht sich auf den für dieses Verfahren gesamten nutzbaren Messbereich ohne Vorverdünnung der Probe und beinhaltet im Regelfall einen (Rechteck-) Küvettenwechsel.

- Die Bezeichnung TC und TP steht für neue Testsätze ohne Chargenzertifikat, die für pHotoFlex geeignet sind.
 - TC sind Reaktionsküvettentests in 16 mm Küvette, TP sind Pulvertests und werden je nach Messbereich in der 28 bzw. 16 mm Küvette gemessen.
- Alle Reagenzientests benötigen z.B. Reaktionsgefäße oder Leerküvetten RK 14/25 und Rechteckküvetten.
- Rundküvetten sind nicht für die Mehrfachverwendung geeignet und für Reagenzientests gesperrt.
- Bei einigen Tests sind die Messbereiche mit zweiter Zitierform angegeben z.B. Nitrat als Nitrat (NO₃) und als Nitrat-Stickstoff (NO₃-N). Weitere mögliche einstellbare Dimensionen und Zitierformen sind der Bedienungsanleitung des verwendeten Gerätes zu entnehmen.
- Tests, die einen Aufschluss erfordern (z.B. CSB), sind mit der Aufschlusstemperatur und -dauer gekennzeichnet (z.B. 148 °C, 2 h). Die Thermoreaktoren von WTW stellen hierfür geeignete Programme zur Verfügung.

Fast alle angebotenen Tests sind normgerecht nach DIN/ISO/EN/US EPA; genauere Angaben finden Sie in der Preisliste.

Reagenzienfreie Tests

% Transmission

0-100 % T, 10, 20 und 50 mm Küvette. (Eigenabsorption)

FAU Trübung

(EN ISO 7027) Bestimmung der Trübung.

Trübung wird in Flüssigkeiten durch die Anwesenheit ungelöster Stoffe hervorgerufen. Im Falle ungelöster, feindisperser Stoffe kann die Trübung durch Messung der Schwächung der Intensität eines durch die Flüssigkeit durchgehenden Lichtstrahls oder durch die Messung der Intensität der Streustrahlung bestimmt werden.

Als Bezug dienen Formazinlösungen, die frisch hergestellt werden müssen und die nicht im Handel erhältlich sind. Gemäß EN ISO 7027 dürfen alle Geräte verwendet werden, die folgenden Anforderungen genügen: Einfallende Strahlung bei 860 nm. Die Angabe des Ergebnisses erfolgt bei Messung der durchgehenden Strahlung in FAU (Formazin-Attenuation Units).

Extinktion

Die Extinktion ist gemäß dem Lambert-Beer'schen Gesetz $E = \epsilon(\lambda) \cdot c \cdot d$ mit der Konzentration eines Wasserinhaltsstoffes proportional verknüpft. Die Proportionalitätskonstante $\epsilon(\lambda)$ ist wellenlängenabhängig. Diese Konstanten und weitere Daten, die zur Bestimmung des Wasserinhaltsstoffes benötigt werden, sind in modernen Photometern als Methodendaten gespeichert. Die Basismessgröße ist und bleibt aber die Extinktion.

Färbung

(EN ISO 7887: 1994)

Wird reines Wasser im durchgehenden Licht durch eine Schicht von mehreren Metern betrachtet, so erscheint es schwach blau gefärbt. Diese Färbung kann sich in Gegenwart von Verunreinigungen zu einer Vielzahl von Färbungen verändern. Natürliche Wässer sind meistens durch Eisender Tonpartikel oder durch Huminstoffe gelblich-braun gefärbt. (Eine grüne Färbung kann durch Algen verursacht werden). Die "wahre" Färbung eines Wassers wird nach Filtration durch ein 0.45 µm Filter bestimmt.

Üblicherweise können die meisten gelblich-braun gefärbten Wässer und die Abläufe kommunaler Kläranlagen bei 436 nm gemessen werden. Die Abläufe industrieller Abwasseraufbereitungsanlagen zeigen keine scharfen und ausgeprägten Extinktionsmaxima. Für die Untersuchung dieser Wässer wird bei 436 nm (Quecksilber-Linie) obligatorisch gemessen, die anderen beiden Messwellenlängen 525 nm und 620 nm können in Abhängigkeit vom verwendeten Filter geringfügig von diesen Wellenlängen abweichen. Die Norm lässt für diskontinuierliche Messungen Filterphotometer mit spektralen Bandbreiten von < 20 nm zu für Messungen bei 436 nm, 525 nm und 620 nm. Es sind also z. B. auch Geräte mit 445 nm-, 520 nm-Interferenzfiltern mit einer Bandbreite von 10 nm geeignet. Bei Vergleichbarkeit mit der Norm ist allerdings ein Spektralphotometer erforderlich.

Das Ergebnis wird in m⁻¹ angegeben mit der Zusatzangabe der Messwellenlänge und der spektralen Bandbreite, der Wassertemperatur und des pH-Wertes.

In manchen Publikationen wird das Ergebnis auch in DFZ (Durchsichtsfarbzahl) angegeben, die mit der Angabe m⁻¹ identisch ist. (DIN ISO 6271: 1988) Klare Flüssigkeiten. Bestimmung der Farbzahl mit der Platin-Cobalt-Skala (Hazen-Farbzahl, APHA-Farbzahl)

Als geeignete Geräte werden Spektralphotometer zur Messung der Stammlösung mit 430 nm, 455 nm, 480 nm und 510 nm angegeben. Die eigentliche Messung erfolgt nach der Norm mit einem Farbvergleichsgerät, das einen visuellen Vergleich zulässt.

Chrom-Bad

Reagenzienlose Messung der Eigenfärbung eines galvanischen Bades.
5 ml Probe in einen 100 ml Messkolben pipettieren, mit destilliertem Wasser bis zur Marke auffüllen und gut mischen. 4 ml der verdünnten Probe in einen 100 ml Messkolben pipettieren, mit destilliertem Wasser auffüllen und gut mischen. 5 ml der 1:500 verdünnten Probe in ein Glas mit Schraubverschluss geben, 5 ml 40%ige Schwefelsäure hinzugeben. Glas verschließen und Inhalt gut mischen. Zur Messung in Rechteckküvette umfüllen.

Nickel-Bad

Reagenzienlose Messung der Eigenfärbung eines galvanischen Bades. In Rundküvette 5 ml Probe mit 5 ml 40%iger Schwefelsäure auffüllen, verschließen und mischen. Zur Messung in Rechteckküvette umfüllen.

Kupfer-Bad

Reagenzienlose Messung der Eigenfärbung eines galvanischen Bades. 25 ml Probe in einen 100 ml Messkolben geben, mit destilliertem Wasser bis zur Marke auffüllen und gut mischen. 5 ml der verdünnten Probe in ein Glas mit Schraubverschluss geben, 5 ml 40%ige Schwefelsäure hinzugeben. Glas verschließen und Inhalt gut mischen. Zur Messung in Rechteckküvette umfüllen.