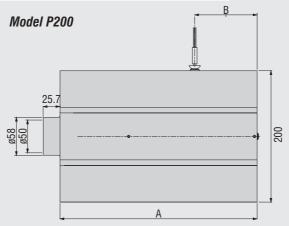


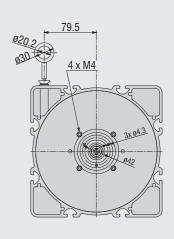
More Precision.

wireSENSOR

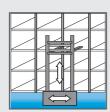
Draw wire sensors / CET / String pots

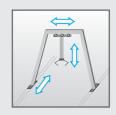
wire SENSOR Series P200

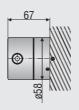


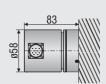

Robust sensor design

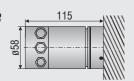

Long range sensor - up to 50,000 mm


Various digital interfaces


The P200 series are specially designed for industrial applications in elevator engineering, crane systems and high bay warehouses. The rugged housing and solid, high quality components guarantee high operational reliability and a long service life even in difficult industrial environments.






Model P200-HTL/TTL

Model P200-SSI

Model P200-CO/PB

Measuring range	А	В
30000	268	75
40000	300	95
50000	333.5	95

	Model	WDS-30000-P200	WDS-40000-P200	WDS-50000-P200	
Measuring range		30000 mm	40000 mm	50000 mm	
Output		HTL, TTL, SSI, PB, CO			
Travel per encoder revolut	ion		500 mm		
Linearity	± 0.01 % FSO	3 mm 4 mm 5 mm			
Resolution	HTL, TTL		0.167 mm (6 pulses/mm)		
Resolution	SSI, PB, CO	0.061 mm			
Temperature range			-20 +80 °C		
Sensor element		incremental-/absolute encoder			
Material		housing: aluminum			
		draw wire: coated polyamid stainless steel (ø 0.8 mm)			
Wire mounting		eyelet			
Sensor mounting		slot nuts			
Wire acceleration		2 g			
Wire retraction force (min)		12 N	11 N	11 N	
Wire extension force (max)		22 N 22 N 2		24 N	
Protection class		IP 65			
output HTL, TTL		integral cable, radial, 1 m long			
Electrical connection	output SSI	connector, radial, 12-pin			
	output PB, CO	bus cover			
Weight		appr. 10 kg	appr. 11 kg	appr. 12 kg	

FSO = Full Scale Output

Specifications for digital outputs page 32 and continuing.

Article description

Accessories and mounting

WE-x-M4, WE-x-Clip Wire extension x=length

TR1-WDS Pulley wheel, adjustable

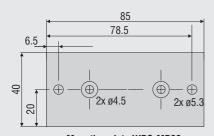
TR3-WDS Pulley wheel, fixed

GK1-WDS Attachment head for M4

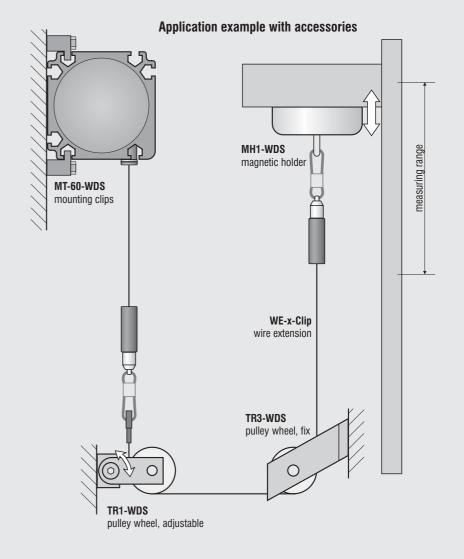
MH1-WDS Magnetic holder for wire mounting

MH2-WDS Magnetic holder for sensor mounting

MT-60-WDS Mounting clamp for WDS-P60


FC8 Female connector for WDS, 8-pin

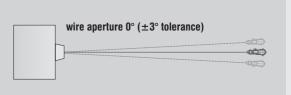
FC8/90 Female connector 90° for WDS, 8-pin


PC 3/8 Sensor cable, length 3 m

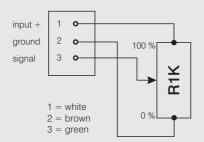
PS 2010 Power supply (chassis mounting 35 x 7.5 mm); input 120/230 VAC; output 24 VDC / 2.5 A; L/B/H 120 x 20 x 40 mm

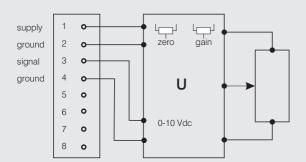
WDS-MP60 Mounting plate for P60 sensors

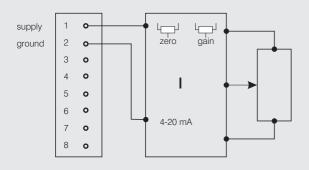
Mounting plate WDS-MP60



Installation information:


Wire attachment: The free return of the measurement wire is not permissible and it is essential that this is avoided during installation.


Wire exit angle:


When mounting a draw-wire displacement sensor, a straight wire exit ($\pm 3^{\circ}$ tolerance) must be taken into account. If this tolerance is exceeded, increased material wear on the wire and at the wire aperture must be expected.

Electrical data analog

Potentiometric output (P)	
Supply voltage	max. 32 VDC at 1 kOhm / 1 W max
Resistance	1 kOhm ±10 % (potentiometer)
Temperature coefficient	±0.0025 % FSO/°C
Sensitivity	depends on measuring range individually shown on test report

Voltage output (U)		
Supply voltage	14 27 VDC (non stabilized)	
Current consumption	30 mA max	
Output voltage	0 10 VDC	
Output voltage	option 0 5 / ±5 V	
Load impendance	>5 kOhm	
Signal noise	0.5 mV _{eff}	
Temperature coefficient	±0.005 % FSO/°C	
Electromagnetic	EN 50081-2	
compatibility (EMC)	EN 50082-2	
Adjustment ranges		
Zero	±20 % FSO	
Sensitivity	±20 %	

Current Output (I)	
Supply voltage	14 27 VDC (non stabilized)
Current consumption	35 mA max
Output current	4 20 mA
Load	<600 Ohm
Signal noise	<1.6 μ A _{eff}
Temperature coefficient	±0.01 % FSO/°C
Electromagnetic	EN 50081-2
compatibility (EMC)	EN 50082-2
Adjustment ranges	
Zero	±18 % FSO
Sensitivity	±15 %

Absolute encoder output specifications: SSI

Contact	description	٦n
Contact	aescribtio	JΠ

1 UB Encoder power supply connection.

2 GND Encoder ground connection. The voltage drawn to

GND is UB.

3 Pulse + Positive SSI pulse input. Pulse + forms a current

loop with pulse -. A current of approx. 7 mA in direction of Pulse + input generates a logical 1 in

positive logic.

4 Data + Positive, serial data output of the differential line

driver. A High level at the output corresponds to

logical 1 in positive logic.

5 ZERO Zero setting input for setting a zero point at any

desired point within the entire resolution. The zeroing process is triggered by a High pulse (pulse duration ≥100 ms) and must take place after the rotating direction selection (UP/DOWN). For maximum interference immunity, the input must be connected

to GND after zeroing.

6 Data - Negative, serial data output of the differential line

driver. A High level at the output corresponds to

logical 0 in positive logic.

7 Pulse - Negative SSI pulse input. Pulse - forms a current

loop with pulse +. A current of approx. 7 mA in direction of Pulse - input generates a logical 0 in

positive logic.

8 / 10

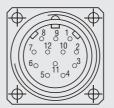
DATAVALID

DATAVALID MT

Diagnosis outputs \overline{DV} and \overline{DV} \overline{MT} Jumps in data word, e.g. due to defective LED or photoreceiver, are displayed via the \overline{DV} output. In addition, the power

supply of the multiturn sensor unit is monitored and the $\overline{\rm DV}$ $\overline{\rm MT}$ output is set when a specified voltage level is dropped below. Both outputs are Low-active, i.e. are switched through to GND in the case of an

error.


UP/DOWN counting direction input. When not

connected, this input is on High. UP/DOWN-High means increasing output data with a clockwise shaft rotating direction when looking at the flange. UP/DOWN-Low means increasing values with a counter-clockwise shaft rotating direction when

looking at the flange.

11 / 12 Not in use

Pin assignment		
Pin	Cable color	Assignment
1	brown	UB
2	black	GND
3	blue	Pulse +
4	beige	Data +
5	green	ZERO
6	yellow	Data -
7	violet	Pulse -
8	brown/yellow	DATAVALID
9	pink	UP/DOWN
10	black/yellow	DATAVALID MT
11	-	-
12	-	-

Please use leads twisted in pairs for extension cables.

Inputs

Control signals UP/DOWN and Zero

Connection: UP/DOWN input with 10 kohms to

UB, zeroing input with 10 kohms to

GND.

SSI pulse

Optocoupler inputs for electrical isolation

Outputs

SSI data RS485 driver

Diagnostic outputs

Push-pull outputs are short-circuit-proof

Level High > UB -3.5 V (with I = -20 mA) Level Low < 0.5 V (with I = 20 mA)

Absolute encoder output specifications: CANopen

CANopen features

Bus protocol CANopen

Device profile CANopen - CiA DSP 406, V 3.0

CANopen Features Device Class 2, CAN 2.0B

Operating modes Polling Mode (asynch, via SDO)

(with SDO progr.) Cyclic Mode (asynch-cyclic) The encoder cyclically sends the current process

actual value without a request by a master. The cycle time can be parameterized for values between 1 and 65535 ms. Synch Mode (synch-cyclic) The encoder sends the current actual process value after receiving a synch telegram sent by a master. The synch counter in the encoder can be

parameterized so that the position value is not sent until after a defined number of synch telegrams.

Acyclic Mode (synch-acyclic)

Preset value With the "Preset" parameter the encoder

can be set to a desired actual process value that corresponds to the defined axis position of the system. The offset value between the encoder zero point and the mechanical zero point of the system is

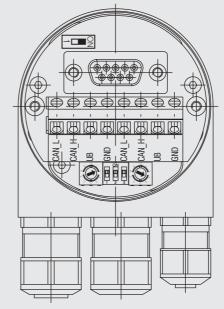
saved in the encoder.

Rotating direction With the operating parameter the rotating

direction in which the output code is to increase or decrease can be parameterized. Scaling The steps per revolution and the total revolution can be

parameterized.

Diagnosis The encoder supports the following error


messages:

- Position and parameter error

- Lithium cell voltage at lower limit

(Multiturn)

Default setting 50 kbit/s, node number 0

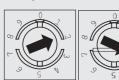
Setting of terminating Resistor for CANopen

ON = Last user OFF = User X

Setting CANopen baud rate

Baud rate	Setting Dip Switch		
	1	2	3
10 kBit/s	OFF	OFF	OFF
20 kBit/s	OFF	OFF	ON
50 kBit/s	OFF	ON	OFF
125 kBit/s	OFF	ON	ON
250 kBit/s	ON	OFF	OFF
500 kBit/s	ON	OFF	ON
800 kBit/s	ON	ON	OFF
1 MBit/s	ON	ON	ON

Contact description CANopen


CAN_L CAN Bus Signal (dominant Low)
CAN_H CAN Bus Signal (dominant High)
UB Supply voltage 10...30 VDC
GND Ground contact for UB

(Terminals with the same designation are internally

interconnected)

Settings of user address for CANopen

Address can be set with rotary switch. Example: User address 23

Absolute encoder output specifications: Profibus

Profibus-DP features

Bus protocol Profibus-DP

Profibus features Device Class 1 and 2

Data exch. functions Input: Position value

Additional parameterized speed signal (readout of the current rotary speed)

Output: Preset value

Preset value With the "Preset" parameter the encoder can

be set to a desired actual value that

corresponds to the defined axis position of the

system.

Parameter functions Rotating direction: With the operating

parameter the rotating direction for which the output code is to increase or decrease can be

parameterized.

Scaling: The steps per revolution and the total

revolution can be parameterized.

Diagnosis The encoder supports the following error

messages:

- Position error

- Lithium cell voltage at lower limit (Multiturn)

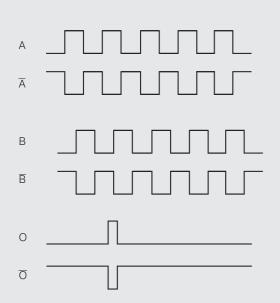
Default setting User address 00

Settings of terminating resistors for Profibus-DP

ON = last user OFF = user X

Settings of user address for Profibus-DP

Address can be set with rotary switch. Example: User address 23



Contact description Profibus-DP		
Α	A negative serial data line	
В	Positive serial data line	
UB	Supply voltage 1030 VDC	
GND	Ground contact for UB	

(Terminals with the same designation are internally interconnected)

Output specifications Incremental-encoder

Signal output

Output TTL	Linedrive	r (5 VDC)
Level High	<u>≥</u> 2.5 V	(with $I = -20 \text{ mA}$)
Level Low	<u><</u> 0.5 V	(with $I = 20 \text{ mA}$)
Load High	<u><</u> 20 mA	
Output	$A, \overline{A}, B, \overline{B}, C$)

Output HTL	Push-pull (10 30 VDC)
Level High	\geq UB -3 V (with I = -20 mA)
Level Low	\leq 1.5 V (with I = 20 mA)
Load	<u><</u> 40 mA
Output	$A, \overline{A}, B, \overline{B}, O$

Output E	Push-pull (5 VDC)
Level High	UB -2.5 V
Level Low	\leq 0.5 V
Load	<u><</u> 50 mA
Output	A, B, O

Output E830	Push-pull (8 30 VDC)
Level High	UB -3 V
Level Low	<u><</u> 2.5 V
Load	<u><</u> 50 mA
Output	A, B, O

Pin assignment TTL, HTL		
Pin	Cable color	Assignment
1	pink	B inv.
2	blue	UB Sense
3	red	N (reference pulse)
4	black	N inv. (reference pulse inv.)
5	brown	A
6	green	A inv.
7	-	-
8	grey	В
9	-	-
10	white/green	GND
11	white	GND Sense
12	brown/green	UB

Pin 2 and Pin 12 are internally connected as well as Pin 11 and 10.

For cable length >10 m twisted pair wires are required

Connection assignment E, E830			
Pin	Cable color	Assignment	
-	white	OV	
-	brown	+UB	
-	green	А	
-	-	Ā	
-	yellow	В	
-	-	B	
-	grey	0	

More Precision. www.micro-epsilon.com

Sensors and systems

for displacement, position and dimension

Sensors and measurement devices

for non-contact temperature measurement

Measurement systems

for online/offline quality control

MICRO-EPSILON Headquarters

Koenigbacher Str. 15 \cdot 94496 Ortenburg / Germany Tel. +49 (0) 8542 / 168-0 \cdot Fax +49 (0) 8542 / 168-90 info@micro-epsilon.com

MICRO-EPSILON UK Ltd.

Dorset House, West Derby Road · Liverpool, L6 4BR Phone +44 (0) 151 260 9800 · Fax +44 (0) 151 261 2480 info@micro-epsilon.co.uk

MICRO-EPSILON USA

8120 Brownleigh Dr. \cdot Raleigh, NC 27617 / USA Phone $+1/919/787-9707 \cdot$ Fax +1/919/787-9706 info@micro-epsilon.us